Journal of Medicinal Chemistry
 (C) Copyright 1967 by the American Chemical Society

Analysis of the Structure-Activity Relationship of the Sulfonamide Drugs Lising Substituent Constants ${ }^{1}$

Toshio Fujita
Department of tgrirultural Chemistry, Kyoto Vnitersity, Kyoto, Japan
and Cormin Hansch
Department of Chemistry, Pomona College, Claremont, California

Received May 15, 196;

Abstract

A recently developed method for the correlation of biological activity and chemical structure of dissociable compounds under physiological conditions using the Hammett σ constant and the hydrophobicity constant π with a correction for the effect of dissociation has been applied to the analysis of the bacteriostatic activity and proten binding of the sulfonamide drugs. The hydrophobicity of the drugs is found to play a definite role on the activity, and the optimal hydrophobic character for the activity is deduced from the relationships. Other factor being equal, logarithmic plots of the apparent activity against the dissociation constant are shown to be exprewed by two straight lines, the intersection of which corlesponds sometimes to the maximal activity for a series of sulfanilamides. The most favorable dissociation constant for the maximum activity and the optimal hydrophobicity for a series of sulfanilamides have been suggested to help in the designing of new sulfonamide drigs.

Much work has been done to elucidate the relation between physicuchemical properties and bacteriostatic activity of the sulfonamide drugs. Bell and Roblin1? found that a logarithmic plot of the bacteriostatic activities of a series of sulfonamides against their dissociation constants exhibits a parabolic relationship. Considering that the activity increases with the negative character of the SO_{2} group, they postulated that the electron-attracting power of the N^{1} substituent should be in an optimal range for the maximal activity so that the ionization constant of the $\mathrm{SO}_{2} \mathrm{NH}$ group is about $10^{-6}-10^{-7}$. An alternative explanation for the parabolic relationship was proposed by Cowles ${ }^{3}$ who assumed that the negative ion which is responsible for the bacteriostatic action penetrates with difficulty to the site of action inside the cell so that there should be an optimal dissociation constant where the balance between the intrinsic activity and the penetration is most favorable to the bacteriostatic process. Seydel and his co-workers, ${ }^{4}$ from a correlation between ir spectra and activity of a number of sulfonamides, emphasized that the amount of negative charge on the aromatic amino group is a significant factor for the activity. In spite of these efforts and others, ${ }^{5}$ generally consider-

[^0]ing a single physicochemical parameter, the structureactivity studies on the sulfonamides still leave much to be desired.

Recently, ${ }^{6}$ we have developed a nethod for the correlation of biological activity and chemical structure using substituent constants such as the Hammett σ constant and a hydrophobicity constant π defined as $\pi=$ $\log P_{\mathrm{X}}-\log P_{\mathrm{H}}$, where P_{X} and P_{H} are the partition coefficients, determined in the system 1-octanol-water, of the substituted and unsubstituted compounds. respectively. The contributions of the electronic and hydrophobic characters of a substituent to a specific biological activity of a series of substituted compounds can be analyzed simultaneously by eq 1 . In eq $1, C$ is

$$
\begin{equation*}
\log (1 / C)=a \pi-b \pi^{2}+\rho \sigma+c \tag{1}
\end{equation*}
$$

the equieffective molar concentration, i.e., the concelltration causing a standard response such as $\mathrm{CD}_{\text {in }}$, $E D_{50}$, minimum inhibitory concentration, etc., and a. $b(\geqq 0), \rho$, and c are constants which are determined by the method of least squares. The value of $1 / C$ is proportional to the magnitude of biological activity. We have applied this method ${ }^{7}$ to compounds which are dissociated under physiological conditions such as a series of substituted phenols. For these compounds, the biological activity can be expressed by either eq 2 or 3 regardless of whether the sites of action are located inside or outside the cell. In eq 2 and $3,\left[\mathrm{H}^{+}\right]$is the hy-

[^1]\[

$$
\begin{aligned}
& \log \frac{1}{6}+\log \frac{k_{A}+\left\lfloor H^{+}\right]}{\left[\mathrm{II}^{+}\right]}=a_{\pi}-u^{2}+\rho \sigma+\quad \text { i(2) }
\end{aligned}
$$
\]

drogen ion concentration of the extracellular phase and K_{A} is the dissociation constant. ρ^{\prime} and c^{\prime} are constants for the ionzed form having the same significance as ρ and c far the nentral molecule. Equation 2 desmibes the structure ativity correlation when the action of a series of compounds is solely due to the neutral molecule. Likewise, eq 3 holds when the ionic form is regarded as the active form. However, if the structure-activity correlation is considered on the basis of the activity data (b)tained at a single extracellular pH^{H}, eq 2 and 3 are interrelated by ed 4 and $\overline{5}$. Therefore. whether the

$$
\begin{gather*}
\rho-\rho^{\prime}=\rho_{A} \tag{4}\\
r^{\prime}=r+p A_{A^{\prime}}^{\prime}-\mathrm{pH}^{2} \tag{5}
\end{gather*}
$$

active form is the neutral or iomized form or both, eq 2 and 3 should hold simultancously. In these equations, ρ_{A} is the Hammett reaction constant for the ionization of the dissociable group in the molecule and $p K_{A}{ }^{a}$ is the $p K_{A}$ of a standard compound (in most cases, the unsubstituted compound). When $\Delta \mathrm{p} K_{\mathrm{A}}=\left(\log K_{\mathrm{A}}{ }^{\mathrm{x}}-\right.$ $\log K_{A}{ }^{0}$) is used for the analysis in place of the Hammett σ constant, ρ_{A} beconies 1 .

The purpose of this paper is to apply this approach to the sulfonamide drugs which exist partly in the dissociated form under conditions of physiological pH . In this way we can get further insight into the significance of electronic and hydrophobie modifications of the molecule on the biological activity. We have found ${ }^{6 a, i}$ in some cases that equations where one or two terms on the right. side of eg $1 \cdots 3$ are deleted are sufficient far rationalizing the physiological actions. Thus, for a series of sulfanilamides, equations such as ba-e and 7 a - c as well as eq 2 and 3 are derived from the apparent biological activity: pH of the test medium, and physicochemical parameters for substitucnts by the nethod of least squares. By examining the correlation coefficients and standard deriations of these cquations, an equation of the best fit is chosen for discussion of the structureactivity relationship.

$$
\begin{align*}
& \log \frac{1}{c^{\prime}}+\log \frac{k_{\mathrm{A}}+[\mu \mid}{[\Pi \mid}=a \pi+c \\
& \log \frac{1}{c}+\log \frac{k_{\mathrm{A}}+|1|-\mid}{|\overline{\mathrm{H}}|}=\rho \sigma+c \\
& \log \frac{1}{e}+\log \frac{K_{A}+[H]}{\left[H^{+}\right]}=a_{\pi}+\rho \sigma+c \\
& \log \frac{1}{a^{\prime}}+\log \frac{k_{A}+\| H_{A}^{+} \mid}{K_{A}^{\prime}}=a \pi+e^{\prime} \\
& \log \frac{1}{\varrho}+\log \frac{K_{A}+|I+|}{K_{A}}=\rho^{\prime} \sigma+\iota^{\prime} \\
& \log \frac{1}{\sigma}+\log \frac{K_{\mathrm{A}}+[\mathrm{H}+]}{K_{\mathrm{A}}^{-}}=a \pi+\rho^{\prime} \sigma+c^{\prime}
\end{align*}
$$

Results and Discussion

Bacteriostatic Activity of the Substituted Sulfanil-anilides.- The bacteriostatic activity of various substituted sulfanilanilides was tested by Schmidt and Sesler ${ }^{8}$ against gram-positive pneumococcus and gram-
(8) I. 14. Exhmidt and C. I.. Sester, .7. Phurmuenl. Exptl. Therup., 87, 313 (39.16).
negative l'riedänder's bacillus and recently by Sevdel" aganst gram-negative E. coli. They did mot eonsider (ither the elfect of ionization mader the experimental conditions or the hydrophobic effect of the substituconts: however, ther did notice that the activity was highly influenced by the position and the mature of the sabstituent. In fact. sevele who had earlier pointed ont the rignificance of the aromatic amme grone for the activity, showed that there is an approsimately lincar relationship between the lagarithm of the minimma inhibitory .oncentration for E^{*}. coli and the physienchemical parameters of the substituted miline moidy. of the drugs such as the H ammett σ const:mu and ir spectral dat:a.

Recentlr, Yoshiok ${ }^{1 \text { 1) }}$ and his asociates have determined the acid dissociation eonstant of this series of compounds and found that a modified Hammett relationship nicely rationalizes the effect of the substituent on the acid dissociation as shown in eq S . Csing the

dissociation constants obtaned by these authors and those calculated by eq s when the constant is lacking. we have analyzed the structure-activity relationship for the sulfimilanilides.

While Schmilt and Sester studied 35 substituted sulfanilanilides, 20 compounds are included in Table I omitting those where steric effects of the substituent (s) make the estimation of the dissociation constant difficult. loor regression amalysis of the activity against pheumocacens, 18 eompounds (3,4 -disubstituted derivativer omitted) arc used. E(puations 9 a-e and 10 a o ate those for the meta dorivatives and eq 11ace and 12a are for the para derivatives (the unsubstituted sulfanilanilide is included in each (ase). In these equations, A is the in bitro activity relative to that of sulfanilamide calculated from the original value corrected to a molar basis and $[\mathrm{H}+]$ is $10^{-7.8 .11} n$ is the number of points used in the regression, s is the standard devi:1tion, and r is the correlation coefficient. For the valuc: of π, those dorived from substituted milines are used. ${ }^{12}$ l'actoring the groups into meta and para derivatives is found to give a much better correlation. When both groups of derivatives are mixed together for the correlation, the activity of the 4 -CF3 derivative is only poorly predicted. The addition of : a π^{2} term daes not impreve the correlation.
meta derivatives

$n \quad s \quad r$
$11.446 \pi+1.274$
$120.54 \div 11.612$
(!):
$\log A+\log \frac{\left.k_{A}+111\right]}{[\mathrm{H}]}=$
$1.372 \sigma+0.866 \quad 12 \quad 0.248 \quad 11.933$
$\log A+\log \frac{K_{A}+|H|+\mid}{\left[H^{+}\right]}=$
$1.204 \sigma+0.239 \pi+0.767 \quad 120.136 \quad 0.982 \quad(90)$

[^2]Table I
Bacteriostatic Activity of Substituted Sulfanilanilides

${ }^{\text {a }}$ Taken from D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958), except for those marked with an asterisk which are taken from ref 10. The values for the polysubstituted compounds are obtained by summing values for the individual substitueuts. ${ }^{b}$ Taken from ref 12 or estimated by eq 16,17 , and or 19 of ref 12 and simply summed to get a figure for the polysubstituted compounds. © Calculated by eq 9 c for the meta derivatives and eq 11 b for the para derivatives. ${ }^{d}$ Calculated by eq 10c for the meta derivatives and eq 12 b for the para derivatives. ©Calculated by eq 13 c . S Calculated by eq 14 c . © Calculated by eq $1 \overline{\mathrm{c}}$. ${ }^{\star}$ Calculated by eq $16 \mathrm{c} .{ }^{i}$ Calculated by eq 11 b and 12 b . ${ }^{j}$ Calculated using $\left.\log A+\log \right]\left(K_{\mathrm{A}}+[\mathrm{H}+]\right) /[\mathrm{H}+1]=(1.204 \sigma+0.239 \pi)_{\text {meta }}+$ $(0.323 \sigma)_{\text {para }}+0.7 o 11$ which is derived by combining eq 9 c and $11 \mathrm{~b} .{ }^{k}$ Calculated using $\log A+\log \left[\left(K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|\right) / K_{\mathrm{A}}\right]=(-0.676 \sigma$ $+0.245 \pi)_{\text {meta }}+(-1.486 \sigma)_{p a r a}+1.892$ which is derived by combining eq 10 c and 12 b .
$\log A+\log \frac{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}{K_{\mathrm{A}}}=$

$$
\begin{equation*}
0.129 \pi+1.621 \tag{10a}
\end{equation*}
$$

$$
\begin{array}{lll}
12 & 0.322 & 0.353
\end{array}
$$

$\log A+\log \frac{K_{\mathrm{A}}+\left[\mathrm{HI}^{+}\right]}{K_{\mathrm{A}}}=$

$$
\begin{equation*}
-0.50 \check{\sigma} \sigma+2.007 \tag{10b}
\end{equation*}
$$

$$
\begin{array}{lll}
12 & 0.251 & 0.685
\end{array}
$$

$\log A+\log \frac{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}{K_{\mathrm{A}}}=$

$$
\begin{equation*}
-0.676 \sigma+0.245 \pi+1.906 \quad 12 \quad 0.134 \quad 0.930 \tag{10c}
\end{equation*}
$$

para derivatives

$$
\begin{align*}
& \log A+\log \frac{\left.K_{\mathrm{A}}+\mid \mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}= \\
& \quad 0.353 \sigma-0.050 \pi+0.777 \quad 7 \quad 0.292 \quad 0.418
\end{align*}
$$

$$
\begin{array}{llllll}
\log A+\log \frac{K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|}{K_{\mathrm{A}}^{\prime}} & \\
-(0.144 \pi+2.029 & 7 & 0.576 & 0.253 \tag{12a}
\end{array}
$$

$$
\begin{align*}
& \log A+\log \frac{K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|}{K_{\mathrm{A}}}= \\
& \tag{12b}\\
& \quad-1.486 \sigma+1.878 \quad 7 \quad 0.322 \quad 0.841
\end{align*}
$$

$$
\begin{align*}
& \log A+\log \frac{K_{A}+\left[\mathrm{H}^{+}\right]}{K_{\mathrm{A}}}= \\
& \quad-1.4 .54 \sigma-(0.054 \pi+1.922 \quad 70.3 .44 \quad 0.846 \tag{12c}
\end{align*}
$$

$$
\begin{align*}
& \log A+\log \frac{K_{A}+\left|\mathrm{H}^{+}\right|}{\left|\mathrm{H}^{+}\right|}= \\
& -0.029 \pi+0.752 \\
& 7 \quad 0.286 \quad 0.105 \\
& \log A+\log \frac{K_{A}+|\mathrm{H}+|}{|\mathrm{H}+|}= \\
& 0.323 \sigma+0.736 \\
& 7 \quad 0.267 \quad 0.378 \tag{11h}
\end{align*}
$$

For the activity of the meta derivatives in terms of the concentration of the neutral form, it seems that the role of the electronic effect of the substituent is most significant, whereas that of the hydrophobic character appears to be supplementary to the activity. An F test indicates, however, that the π tern in eq 9 c is justified at better than 0.995 level of significance when compared with eq $9 \mathrm{~b}\left(F_{1,9}=24.03 ; \quad F_{1,9,0.005}=13.61\right)$. The somewhat lower correlation coefficient of eq 10 c for the activity in terms of concentration of the ionized form is attributed to the smaller variance in the values of log $A+\log \left[\left(K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]\right) / K_{\mathrm{A}}\right]$. As expected from eq 4 and 5 , eq 9 c and 10 c are related by the difference between ρ values: $\rho-\rho^{\prime}=1.88$ which is essentially equal to ρ_{A} in eq 8 and that between constant terms which is approxinately equal to $\mathrm{p}_{\mathrm{A}^{0}}{ }^{0}-\mathrm{pH}=9.0-$ $7.8=1.2$.

For the para derivatives, the situation is quite different. Here, the much poorer correlations obtained for eq $11 \mathrm{a}-\mathrm{c}$ are partly attributable to the much smaller variance in the values of $\log A+\log \left[\left(K_{A}+\left[\mathrm{H}^{+}\right]\right) ;\right.$ $\left.\left[\mathrm{H}^{+}\right]\right]$than those for the meta derivatives. However, eq 12b, a counterpart of 11 b, shows a moderately good fit for the values of $\log A+\log \left[\left(K_{A}+\left[\mathrm{H}^{+}\right]\right) / K_{A}\right]$. The most important inference from the result obtained by factoring is that the hydrophobic bonding of the para substituents as measured by π plays practicallyno role in the relative activity. The introduction of a π term into eq 11 b and 12 b does not yield a better correla-
tion. The para isomers are gute active regardless of the type of substituent, at least within the limits studied. This result could be taken to mean that inhibition of a metabolic change at this point (og., hy(hoxytation) by the bacteria is responsible for the higher activity:
loo the activity against the gram-negative bacteria. we have derived eq $13 a \mathrm{c}$ and 1 ta e for lriedlander's bacillus and ed 1bac and 1 Ga e for E. coli. In eq $13 a \mathrm{c}$ and $14 \mathrm{a}-\mathrm{c}, \mathrm{A}$ and $[\mathrm{H}+]$ have the same meaning
 the minimum inhibitory concentration in mmole 1 . and $\left[\mathrm{H}^{+}\right]$is $10^{-7.2}$ (Sauton medium ${ }^{13}$). It is noteworth that the equations for the two gram-negative bacteria are very similar to each other, although the correlations obtamed lon friedänders bacillus are not vory srood.
agamed lacedhander* bacillas

againsi E. coli

$\log \frac{1}{C_{i}}+\log \frac{K_{A}+111}{K_{A}}=$

$$
-0.351 \sigma+11.4 .5
$$

$1711.1 .51 \quad 0.711$
(16)!

I tests indicate that the π term in eq 13 c is justified at better than 0.90 level of significance when compared with e(f 13b $\left(F_{1.1:}=3.41, F_{1,15,0.10}=3.03\right)$ and that in ect 15 c at better than 0.975 level of significance compared with elf 1ith $\left(F_{1,14}=9.35, F_{1,14,0,453}=6.30\right)$. For the gram-acgative bacteria, factoring the groups into

[^3]
the meta and para derivatives does not improve the eorrelation. Eiquations 13 e and He :are approximatoly

 where log K_{3} is not a linear function of $\sigma^{-\quad}$ but expresed hy exs. hat thi- case. the difference betwern ρ and ρ ' is approximately equal to ρ^{\prime} a expresed by ef 17 where σ and σ are those for the p-nitio group, i.e., ρ^{\prime}, $=$ $1 . x \times 3 \mid 0.7 x+0.5+(1.27-0.7 \times)] 1.27=1.5(0$
$$
\rho^{\prime} 1 \sigma=\rho_{\lambda} \mid \sigma+0.5+1 \sigma-\sigma 1
$$

As to the active form of sulfomamide drugs, some workers ${ }^{14}$ have concluded that the activity is due to the ionized form from the nature of the lunction relating the activity of sereral sulfonamides to the hydrogen ion eoncentration. Other workers have considered that the negative ion is not itself a prerequisite fon :utivity since the same activity is observed in such nomadidic compounds as $4, t^{\prime}$-diaminodiphenyl sulfone and sulfaniguanidine. By our procedure, however, even if the true active agent is monown and whaterer the active fom may be the activity data obtaned at a specific pH can be accommorlated by either eq 2 on ? because of the relationship expressed by eap and in. ha this situation. therefore, one seeme justified in discussing the structure activity relation using the equation with the higher correlation coofficient maless the standand deviations of the correlations are quite dilferent.

Schmidt :and sestern also studied the antagonistio offect of p-ammobenzoic: acid on the antibacterial attivity of these eompounds. The determinations could not be made for all the compomeds incladed in Table l, but ther found that p-immobenzoic acid blocked the activity against friedländer's bacillus in every instance where the deteminations conld be made, whereas against pmemococcus, p-ammobenzoid acid exerted the antagonistic effect on only some of the meta and para derivatives. This lact might indieate that some of the sulfamiamildesexert antipnemmococeal activity through a different medamism liom athers uf the same serice of compomads. For the meta and para derisatives, it is pasible to comsider different mechanisms as indicated by the different equations (ed ge and 1th). Howevor. the good arrelation corefficients abtaned for en 9 b and od be woud indieate that the antibacterial action agamst paemonoracens is brought about by the same mechaniom, at least throughout the meta derivatives. The close similarity in ρ values observed in ef $90.13 c$, and 150 suggests that the electronie demands for the antibacterial activity are the same in these threc instances. In this respect. it should be moted that the activity of sulfanamide drugs has been postalated in some cases to aecur through effects on metabolites other than p-ammobenzoid acid. ${ }^{\text {an }}$

The plas sign of the coefficient of the π term in erp !ac infers that the highor the π value, the higher the antipnemmococcal activity, white the minus sign in eq 130 and 15e indicates that the reverse is true for the gramnegative bateria. If we consider that the linear do-

 66. $1591(1!11 \mathrm{t}$

pendence of the untibacterial activity on the π value obtained in these equations comes from the "linear portion" of the parabolic relationship expressed by eq $1,{ }^{6 a}$ the above results would indicate that, for the grampositive pneumococcus, increasing the π value beyond the limit of the sulfanilanilides tested in this research would yield an optimal π for the highest activity. On the other hand, for the gram-negative bacteria, decreasing the π value below the limit of the series of compounds, an optimal π would be found. That the optimal π value in this series is larger with the gram-positive bacteria than with the gram-negative bacteria is quite consistent with data obtained earlier for the antibacterial activities of the chloramphenicol analogs ${ }^{16}$ and the substituted phenols. ${ }^{\text {ba }}$
l'or the sulfanilanilides for which $K_{A} \ll\left[\mathrm{H}^{+}\right]$, eq 9c, 13 c , and 15 c reduce to eq 18,19 , and 20 , respectively. loor those for which $K_{A} \gg\left[\mathrm{H}^{+}\right]$, eq $10 \mathrm{c}, 14 \mathrm{c}$, and 16 c reduce to eq 21,22 , and 23 , respectively.

$$
\begin{gather*}
\log A=1.204 \sigma+0.239 \pi+0.76 \bar{i} \tag{18}\\
\log A=1.009 \sigma-0.1 .33 \pi+0.027 \tag{19}\\
\log (1 / C)=1.298 \sigma-0.141 \pi-1.204 \tag{20}\\
\log A=-0.676 \sigma+0.245 \pi+1.906 \tag{21}\\
\log A=-0.857 \sigma-0.147 \pi+1.150 \tag{22}\\
\log (1 / C)=-0.280 \sigma-0.239 \pi+0.568 \tag{23}
\end{gather*}
$$

From this discussion, it is apparent that for the antibacterial activity of this series of compounds, the position and the hydrophobicity of the substituents on the aniline moiety are significant as well as the dissociation of the $\mathrm{SO}_{2} . \mathrm{KH}$ group andion the electronegativity of the substituent. However, keeping the hydrophobic parameter constant in eq 18-23, the apparent activity $[\log A$ or $\log (1 / C)]$ is expressed by biphasic plots with respect to σ of which the slopes are 1.204 and -0.676 for the meta derivatives against pneumococcus, 1.009 and -0.857 for Friedländer's bacillus, and 1.298 and -0.280 for E. coli according to the conditions of $[\mathrm{H}+]$ $\gg K_{A}$ and $\left[\mathrm{H}^{+}\right] \ll K_{A}$, respectively. Thus, Bell and Roblin's parabolic relationship between $\log (1 / C)$ and $\mathrm{p} K_{A}$ can be nicely interpreted by these biphasic plots, the intersection of which corresponds approximately to the maximal activity. The maximum contribution from the σ term to the apparent potency of the drugs would be made by setting $\partial \log A / \partial \sigma=0$ in eq $2,6 \mathrm{~b}$, or 6 c .

Equations 2, 6 b , and 6 c can be rearranged to the form of eq 24 where $f(\pi)$ is either zero. $a \pi$, or $a \pi-$ $b \pi^{2}$. By taking the partial differential of eq 24 , we obtain eq $2 \overline{5}$.
$\log \mathrm{t}=\mathrm{f}(\pi)+\rho \sigma+\log \left[\mathrm{H}^{+} \mid-\log \left(\mid \mathrm{H}^{+}\right\}+K_{A}\right)+c$

$$
\begin{align*}
\frac{\partial \log \mathrm{t}}{\partial \sigma}= & \rho-\frac{1}{\left.K_{\mathrm{A}}+1 \mathrm{H}^{+}\right]} \frac{\left(\mathrm{K} K_{\mathrm{A}}\right.}{\mathrm{d} \sigma}= \tag{24}\\
& \rho-\frac{1}{K_{\mathrm{A}}+\mid \mathrm{H}+1} \frac{\mathrm{~d} \log K_{\mathrm{A}}^{-}}{\mathrm{d} \sigma} / \frac{\mathrm{d} \log K_{\mathrm{A}}}{\mathrm{~d} K_{\mathrm{A}}}= \\
& \rho-\frac{K_{\mathrm{A}}}{\left.K_{\mathrm{A}}+\mid \overline{\mathrm{H}}+\right]} \frac{\mathrm{d} \log K_{\mathrm{A}}}{\mathrm{~d} \sigma}=\rho-\frac{K_{\mathrm{A}}}{K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|} \rho_{\mathrm{A}} \tag{2.5}
\end{align*}
$$

Similally, from eq $3,7 \mathrm{~b}$, and 7 c we can derive eq 26

$$
\begin{equation*}
\frac{\log 1}{0 \sigma}=\rho^{\cdot}-\frac{\left.1 \mathrm{H}^{+}\right]}{h_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]} \rho_{\mathrm{A}} \tag{26}
\end{equation*}
$$

(16) C. Hansclı, R. M. Muir, T. Fijita. P. P. Maloney, F. Geiger, and M. Streicl, J. Am. Chem. Soc., 85, 2817 (1963).
which relates to eq 25 by eq 4 . Substituting eq 4 into eq 25 or 26 and setting the resultant equation to zero yields eq 27 or 28 for the ideal dissociation constant,

$$
\begin{gather*}
\left.K_{\mathrm{A}}=-\left(\rho / \rho^{\prime}\right) \mid \mathrm{H}^{+}\right] \tag{27}\\
\mathrm{p} K_{\mathrm{A}}=-\log \left(-\rho \mathrm{o}^{\prime} \rho^{\prime}\right)+\mathrm{pH} \tag{28}
\end{gather*}
$$

regardless of the value of ρ_{A}. Thus, the most farorable dissociation constants under the experimental conditions are found to be $K_{A} \sim 10^{-7.5}$ for the meta derivatives against pneumococcus, $K_{A} \sim 10^{-7.7}$ against l'riedländer's bacillus, and $K_{\mathrm{A}} \sim 10^{-6.5}$ against E. coli.

Bacteriostatic Activity of the Substituted \mathbf{N}^{1}-Ben-zoylsulfanilamides.-Sey'del and Wempe ${ }^{17}$ examined the relationship between antibacterial activity and physicochennical properties of the N^{-1}-benzoylsulfanilanides and argued that the activity is correlated to the difference between $\mathrm{p} K_{A}$ values of a certain substituted N^{-1}-benzoylsulfanilamide and the corresponding Γ^{4} acetyl derivative. We have analyzed their activity data obtained at pH 7.2 (Sauton medium ${ }^{13}$) against gram-negative E. coli and gram-positive Mycobacterium smegmatis with the correction for ionization. From the data in Table II, eq $29 a-d$ and $30 a-d$ are obtained for the activity against E. coli and eq $31 \mathrm{a}-\mathrm{d}$ and $32 \mathrm{a}-\mathrm{d}$ for that against M. smegmatis.
against E. coli

$$
\begin{align*}
& \log \frac{1}{C}+\log \frac{\left.K_{\mathrm{A}}+\mid \mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}= \\
& -0.913 \pi+8.240 \\
& 15 \quad 0.5020 .787 \\
& \text { (29a) } \\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+1 \mathrm{H}^{+} \mid}{\left.1 \mathrm{H}^{+}\right]}= \\
& 3.499 \Delta \mathrm{p} K_{\mathrm{A}}+8.346 \quad 15 \quad 0.383 \quad 11.882 \\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}= \\
& 2.644 \Delta \mathrm{p} K_{\mathrm{A}}-(1.334 \pi+8.442 \quad 15 \quad 0.365 \quad 1) .9(12 \\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+1 \mathrm{H}+1}{\left.1 \mathrm{H}^{+}\right]}= \\
& -11.291 \pi^{2}+0.465 \pi+ \\
& 2.636 \Delta \mathrm{p} K_{\mathrm{A}}+8.036 \quad 1.5 \quad 11.312 \quad 11.936 \\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+!\underline{\mathrm{H}^{+} \mid}}{K_{\mathrm{A}}}= \\
& -0.68 i \pi+5.668 \quad 15 \quad 0.421 \quad 11.751 \tag{1a}\\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+1 \mathrm{H}^{+} 1}{K_{\mathrm{A}}}= \\
& 2.481 \Delta \mathrm{p} K_{\mathrm{A}}+5.702 \quad 15 \quad 0.386 \quad 0.706 \\
& \log \frac{1}{C}+\log \frac{\left.K_{\mathrm{A}}+1 \mathrm{H}^{+}\right]}{K_{\mathrm{A}}}= \\
& 1.657 \Delta \mathrm{p} K_{\mathrm{A}}-(0.321 \pi+5.795 \quad 15 \quad 0.371 \quad 10.830 \tag{30c}\\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|}{K_{\mathrm{A}}}= \\
& -11.289 \pi^{\prime \prime}+11.474 \pi+ \\
& 1.650 \Delta \mathrm{p} K_{\mathrm{A}}+5.390 \quad 1.5 \quad 0.320 \quad 0.887 \tag{30,1}
\end{align*}
$$

against M. smegmalis
$\begin{aligned} \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+\mid \mathrm{H}+1}{1 \mathrm{H}+1} & = \\ -0.940 \pi & +8.571\end{aligned}$
$14 \quad 0.605 \quad 0.750$
(31a)
$\log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|}{\left|\mathrm{H}^{+}\right|}=$ $3.6 .4 \mathrm{H}_{\mathrm{A}}+8.742 \quad 14 \quad 1.512 \quad 1 . x_{2} 2$.
(alb)

[^4]Thule II

Substitumb	$\Delta p K_{i}^{\prime \prime}$	$\pi^{\prime \prime}$							$\begin{gathered} 1_{1}\left(1 I_{1}+(1)!\right. \\ K_{1}+(11) \end{gathered}$			
							K_{A}					
			(11)..1	Calcas	(14xal	(ale.1"			Ob, ${ }^{\text {a }}$		Oh,4	('thes. ${ }^{\text {a }}$
11	11	11	7.9	7.91	$\therefore 2.2$	i.3)	-	$\therefore 12$	-1.3:)	-		
$\because \mathrm{CH}$	-0.35	0.68	6.9	7.411	4.57	5.00	- 3	T. 63	$\therefore 12$	- 36		
3)-(11:	-0.20	0.72	7.8	7.75	.) 40	S.23	Q.2	7.98	$\therefore 7$.).5\%		
4-Cll:	-0.1.	0.42	7.9	7.84	-1.41)	\therefore - 29	S.2	S.07	$\therefore .71$	7. 30		
4-Cig.	-0.15	0.62	S. 1	7.7	- 6.2	5) 3	$\therefore 2$	$\therefore 2$	3.70	$\therefore .7$		
4- $\mathrm{C}_{6} 11$:	-0.21	1.42	7.6	7.63	i. 17	i.1;	人.2	¢.ui	¢.71	I, 62		
4-i-C. $\mathrm{Hi}_{\text {\% }}$	-0.15	1.40	7.9	7.70	.i.4)	-1.24	心.2	- 2.9	$\therefore .70$	I.74		
2,4-(Cll, ${ }^{2}$	-0.45	1.10	6.8	6.97	4.65	4.8.2	7:	7.42	I. 10	-1.24		
$2,5-\left(\mathrm{CH}_{3}\right)=$	-0.50	1.20	6.7	6.73	4.87	4.72	7.1	\bigcirc	5.122	i. 14		
3,4-(CH: ${ }_{3}$	-0.:31	U. 94	7.7	7.45	$\therefore .44$	i17	$\bigcirc 1$	7. S^{2}	\therefore	i.ill		
$2,4,6-\left(\mathrm{CH}_{3}\right)_{4}$	-0.0is	1.78	6.3	6.40	4.19	4.41	(i.: $:$	(i.sis	4.1 !	1.80		
$2,4,5-\left(\mathrm{CH}_{3}\right)^{2}$	-0.5.)	1.62	6.9	(3.42	4.81)	4.4!	5.i	(i.) 94	5.47	4.90		
$2,3,4 \times, 6-\left(\mathrm{CH}_{3}\right)$	-0.70	2.82	. 2.2	5.32	3. 3^{4}		. 2	$\therefore 14$	3.24	3.		
$3-\mathrm{CH}-4-\mathrm{OCH}_{3}$	-0.35)	11.60	7.6	7.41	$\therefore \mathrm{in}$	4.9	S.0	7.31	$\therefore 70$	S. $3: 3$		
$3-\mathrm{CH}_{3}-4-\mathrm{SCH}_{3}$	-0.15	1.12	7.2	7.74	4.71	- 31						

"Calculated from the values of pha in Table II of ref 17 . "Taken fom ref 12 and simply smmed to get figure for the pustysul,

$$
\begin{aligned}
& \log \frac{1}{(}+\log \frac{K_{A}+111+1}{\left|\Pi^{+1}\right|}= \\
& 2.724 \Delta \mathrm{p} K_{\mathrm{A}}-0.342 \pi+8.811 \quad 1410.50910 .846 \text { (310) } \\
& \log \frac{1}{c}+\log \frac{k_{A}+[1 \cdot 1+1}{\left[H^{+}\right]}= \\
& -0.519 \pi^{2}+1.12 \times \pi+ \\
& 2.909 \Delta p K_{A}+8.110 \\
& 14 \quad 0.350 \quad 10.937 \text { (31d! } \\
& \log \frac{1}{(}+\log \frac{K_{A}+111+\mid}{K_{A}}= \\
& 140.016 \quad 11.717 \text { (32a } \\
& \log \frac{1}{6}+\log \frac{K_{A}+111-1}{K_{A}^{-}}= \\
& 2.653 \Delta \mathrm{~B} K_{\mathrm{A}}+6.112 \\
& 14 \quad 0.496 \quad 11.74 \div \\
& \text { (321) } \\
& \log \frac{1}{(1}+\log \frac{K_{A}+11+1}{K_{A}}=
\end{aligned}
$$

$$
\begin{aligned}
& \log { }_{c}^{1}+\log \frac{K_{A}+\mid H-1}{K_{A}}= \\
& -\left(0.500 \pi^{2}+1.0 .05 \pi+\right.
\end{aligned}
$$

In these equations, C is the minimum inhibitory concentration in μ mole l. and $\Delta \mathrm{p} K_{\mathrm{A}}$ is obtained using the $\mathrm{p} K_{A}$ value of the unsubstituted λ^{1}-benzoylsulfanilamide as a standard. l'or the π values, those obtained for the substituted benzoie acids are used. ${ }^{12}$ Comparison of these equations would indicate that the activity of this series of compounds is not linearly related to π. Both π and π^{2} terms in er 29 d and 31 d are justified at better than $0.95\left(F_{2,11}=4.64, F_{2,11,0.02}=3.98\right)$ and 0.99 $\left(F_{2,10}=7.87, F_{2,10,0.01}=7.56\right)$ level of significance compared with oq 290 and 31 b , respectively. For this series of compounds, hydrophobic characteristics of the substituents are sufficiently varied to cover the optimal value for the maximum activity. The optimal π valnes arre ealeulated by setting o $\log (1 / C) / d \pi=$
 matis. The larger π_{11} value for the granı-positive bacterium than far the gram-negative ane is in accord with the finding obtaned in the case of the sulfantanitides as described :bove. Equations 29 d and 30d and eq 31d and $32 d$ are related by od 4 and 5 as theoretically expected. Thus, the structure activity eomelation of this
series of compounds is neatly retionalized in terms of electronic and hydrophobic characters of the substituents instead of the complex parameter (a $\mathrm{p} K_{\mathrm{A}}$ (lifferenco) described by the original authors.

Since all the dissociation comstant values for the combpounds studied in this wod are at least 100 times larger than the value of the hivengen ion concentration of the test medium ($\left.10^{-7.2}\right)$, the correction term, $\log \left[\left(K_{A}+\right.\right.$ $\left.\left.\left[\mathrm{H}^{+}\right]\right) / K_{\mathrm{A}}\right]$, becomes practically zero. l'or such compounds where $K_{\mathrm{s}} \gg\left[\mathrm{H}^{+}\right]$, the apparent potency of the drugs is predicted by er $3: 3$ and 34 . Likewise, for those where $K_{1} \ll\left[\mathrm{H}^{+}\right]$. the apparent potency is deseribed by eq 35 and 36 which are obtaned from ed 29 d and 31 d with the $\log \left[\left(K_{\mathrm{A}}+[\mathrm{H}+1) /\left[\mathrm{H}^{+}\right]\right]\right.$term deleted. Thus, if the hydrophobicity of the substituent

$$
\begin{aligned}
& \operatorname{lng}\left(16=-11.250_{\pi}+11.474 \pi+1.6 .00 \Delta p K_{A}+3.390\right. \\
& \text { (againsi E. (oli) 9.3:3) } \\
& \operatorname{lng}\left(1,(01=-0.010) \pi^{2}+1.0 .5 \pi \pi+1 . N 47 \Delta p K_{A}+.5 .51 .1\right. \\
& \text { (against M. shegmalis) (S4) } \\
& \log (1 / C)=-10291 \pi^{2}+(1.46 .) \pi+2.036 \Delta \mathrm{p} K_{\mathrm{A}}+8.1636 \\
& \text { (agninst E. coli) (is)? } \\
& \log \left(1 /()=-11.119 \pi^{2}+1.12 S_{\pi}+9.909 \rho_{\mathrm{p}} K_{\mathrm{A}}+\infty .119\right. \\
& \text { (againot M. smegmatio) (30) }
\end{aligned}
$$

is kept constant, the biphasic plots for the apparent drug activity $[\log (1 / C)]$ with respect to $\Delta \mathrm{p} K_{A}$ can be expressed by two straight lines of which the slopes are 1.650 and 2.636 for E, coli and 1.847 and 2.909 for M. smegmatis according $10 K_{A} \gg\left[\mathrm{H}^{+}\right]$and $K_{A} \ll\left[\mathrm{H}^{+}\right]$. respectively. In this series of compounds, the apparent potency, $\log (1 / C)$, seems to keep increasing with increasing $\Delta p K_{A}$ or the electron-attracting ability of the substituent, regardless whether $K_{\mathrm{A}} \ll[\mathrm{H}+]$ or $K_{\mathrm{A}} \gg$ $\left[\mathrm{H}^{+}\right]$even thongh the slopes are different. Hownore. the eompomads nsed in deriving the equations are mostly alkyloubstituted derivativers for which $\Delta p K_{i}$ values do not vary significantly so that the ρ values obtained by means of the least-squares method are not highly rediable. Therefore, a definite eonchasion on the pKa dependence of the in titro activity could not beon drawn before the derivatives possessing electron-withdrawing substitnents are tested in this series of com-
pounds. At any rate, it appears that the Bell and Roblin's parabolic relationship does not necessarily hold in some types of sulfonamide drug where both ρ and ρ^{\prime} are positive or negative in eq 27 or 28 .

Plasma Protein Binding and Bacteriostatic Activity of the \mathbf{N}^{1}-Heterocyclic Sulfanilamides.-While protein binding inactivates the sulfonamide drugs, ${ }^{18}$ it was found that the protein bound drugs are only slowly metabolized at the liver, and the binding is reversible so that the active free form can be liberated gradually as the levels in the blood are lowered. ${ }^{19}$ Thus, protein binding could be a significant factor for the duration of action of drugs. There has been considerable controversy as to correlations of physicochemical properties of sulfonamides with their protein binding, ${ }^{5 c}$. 20 Rieder has recently studied a number of sulfonamide drugs and determined their binding to human plasma protein. ${ }^{21}$ His analysis of this phenomenon in terms of physicochemical properties such as acid dissociation constants and oil-water partition coefficients, however, did not consider the effect of ionization of the drugs under physiological conditions.

If we assume that the process of binding of dissociable compounds is as shown below, i.e., in the free state, they exist as two different species, the neutral and ionized form of which concentrations are $C_{F}(1-\alpha)$ and $C_{F} \alpha$, respectively, but in the bound state they exist as only one form, C_{B}, then the equilibrium constants for the binding of the two species are expressed by eq 37 and 38.

$$
\begin{align*}
& \text { free state bound state } \\
& C_{\mathrm{F}(1-\alpha) \text { (neutral form) }}^{C_{1}} \tag{37}\\
& K_{1}=C_{\mathrm{B}} / C_{\mathrm{F}}(1-\alpha) \tag{38}\\
& K_{2}=C_{\mathrm{B}} / C_{\mathrm{F} \alpha}
\end{align*}
$$

The effective binding constant, C_{B} / C_{F}, is thus described in eq 39.

$$
\begin{equation*}
\frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}=\frac{K_{1} K_{2}}{K_{1}+K_{2}} \tag{39}
\end{equation*}
$$

If we take the ratio of the effective binding constants of a series of substituted derivatives to that of the unsubstituted standard compound, eq 40 is obtained.

$$
\begin{equation*}
\frac{C_{\mathrm{B}}}{C_{\mathrm{F}}} /\left(\frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}\right)_{0}=\frac{K_{1} K_{2}}{K_{1}{ }^{0} K_{2}}{ }^{0} K_{1}{ }^{0}+K_{2}{ }^{0}{ }^{0}+K_{2} \tag{40}
\end{equation*}
$$

Taking the logarithms of both sides yields eq 41 .

$$
\begin{equation*}
\log \frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}=\log \frac{K_{1}}{K_{0}^{0}}+\log \frac{K_{2}}{\bar{K}_{2}{ }^{0}}+\log \frac{K_{1}{ }^{0}+K_{,}{ }^{0}}{K_{1}+K_{2}}+\log \left(\frac{C_{\mathrm{B}}}{\bar{C}_{\mathbf{F}}}\right)_{0} \tag{41}
\end{equation*}
$$

The ratios, $K_{1} / K_{1}{ }^{0}$ and $K_{2} / K_{2}{ }^{0}$, can be considered to be functions of the hydrophobic and electronic character of the substituent so that they can be expressed as in eq 42 and 43 where $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}$, and c_{2} are constants.

[^5]\[

$$
\begin{align*}
& \log \frac{K_{1}}{K_{1}{ }^{0}}=a_{1} \pi+b_{1} \sigma+c_{1} \tag{42}\\
& \log \frac{K_{2}}{K_{2}{ }^{0}}=a_{2} \pi+b_{2} \sigma+c_{2} \tag{43}
\end{align*}
$$
\]

The logarithm of the binding constant of a series of phenols to serum albumin and to mitochondrial protein determined under conditions where the dissociation can be ignored has been recently shown to be correlated by a linear combination of free-energy-related parameters such as π and $\mathrm{p} K_{\mathrm{A}}{ }^{\text {6d }}$ Substituting eq $37,38,42$, and 43 into eq 41 and collecting the terms yields eq 44 .

$$
\begin{align*}
\log \frac{C_{\mathrm{B}}}{C_{\mathrm{F}}} & =\left(a_{1}+a_{2}\right) \pi+\left(b_{1}+b_{2}\right) \sigma+ \\
& \log \frac{\left(\frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}\right)_{0}\left(\frac{1}{1-\alpha_{0}}+\frac{1}{\alpha_{0}}\right)}{\left(\frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}\right)\left(\frac{1}{1-\alpha}+\frac{1}{\alpha}\right)}+\log \left(\frac{C_{\mathrm{B}}^{\prime}}{C_{\mathrm{F}}}\right)_{0}+c_{1}+c_{2} \tag{44}
\end{align*}
$$

Since $\alpha=K_{\mathrm{A}} /\left(K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]\right)$and $1-\alpha=\left[\mathrm{H}^{+}\right] /$ $\left(K_{A}+\left[\mathrm{H}^{+}\right]\right)$, eq 44 can be converted to eq 45 and further to eq 46.

$$
\begin{align*}
2 \log \frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}= & \left(a_{1}+a_{2}\right) \pi+\left(b_{1}+b_{2}\right) \sigma+\log \frac{\alpha}{\alpha_{0}}+ \\
& \log \frac{1-\alpha}{1-\alpha_{0}}+2 \log \left(\frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}\right)_{0}+c_{1}+c_{2} \tag{45}\\
2 \log \frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}= & \left(a_{1}+a_{2}\right) \pi+\left(b_{1}+b_{2}\right) \sigma+\log \frac{K_{\mathrm{A}}}{K_{\mathrm{A}}{ }^{0}}+ \\
& \quad 2 \log \frac{K_{\mathrm{A}}^{0}+1 \mathrm{H}+1}{K_{\mathrm{A}}+1 \mathrm{H}+1}+2 \log \left(\frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}\right)_{0}+c_{1}+c_{2} \tag{46}
\end{align*}
$$

By substituting $\log \left(K_{\mathrm{A}} / K_{A}{ }^{0}\right)=\rho_{\mathrm{A}} \sigma$ into eq 46 and collecting terms, eq 47 is obtained, where $k=\left(a_{1}+\right.$ $\left.a_{2}\right) / 2, \rho=\left(b_{1}+b_{2}+\rho_{\mathrm{A}}\right) / 2$, and $c=\log \left[\left(C_{\mathrm{B}} / C_{\mathrm{F}}\right)_{0}\right]+$ $\left(c_{1}+c_{2}\right) / 2$.

$$
\begin{equation*}
\log \frac{C_{\mathrm{B}}}{\bar{C}_{\mathrm{F}}}+\log \frac{K_{\mathrm{A}}+1 \mathrm{H}+1}{K_{\mathrm{A}}{ }^{0}+[\mathrm{H}+]}=k \pi+\rho \sigma+c \tag{47}
\end{equation*}
$$

Equation 47 can be modified into eq 48 a and 48 b where

$$
\begin{align*}
& \log \frac{C_{\mathrm{B}}}{C_{\mathrm{r}^{\prime}}}+\log \frac{\left.K_{\mathrm{A}}+1 \mathrm{H}^{+}\right]}{\left.1 \mathrm{H}^{+}\right]}=k \pi+\rho \sigma+c^{\prime} \tag{48a}\\
& \log \frac{C_{\mathrm{B}}}{C_{\mathrm{F}}}+\log \frac{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}{K_{\mathrm{A}}}=k \pi+{f^{\prime} \sigma+c^{\prime \prime}}^{\prime \prime} \tag{48b}
\end{align*}
$$

$c^{\prime}=c-\log \left[\left[\mathrm{H}^{+}\right] /\left(K_{\mathrm{A}^{0}}+\left[\mathrm{H}^{+}\right]\right)\right], \rho^{\prime}=\rho-\rho_{\mathrm{A}}$, and $c^{\prime \prime}=c-\log \left[K_{\mathrm{A}}{ }^{0} /\left(K_{\mathrm{A}}{ }^{0}+\left[\mathrm{H}^{+}\right]\right)\right]$.

Equation 48a is the expression for the binding constant K_{1}, when only the neutral form of the free molecule is responsible for the binding, and eq 48 b is that for K_{2} where only the ionized form is considered in the binding process. Klotz and Walker ${ }^{20 a}$ examined the binding of some sulfonamides by bovine serum albumin and postulated that the binding is attributable mainly to the ionized form of the drugs. Since the expressions are interrelated a priori, the correlation of the protein binding of a series of dissociable compounds to their hydrophobic and electronic properties can be analyzed by the same procedure, whichever form of the free molecule, the neutral or ionic or both, might be associated with the binding process.

As a criterion of the plasma-binding ability, Rieder ${ }^{21}$ has determined Langmuir's α constant which is inversely proportional to the effective binding constant, $C_{\mathrm{B}} / C_{\mathrm{F}}$. Langmuir's β constant, which reflects the total number of binding sites per molecule of protein, is nearly constant; i.e., the mechanism of binding is considered to be the same throughout the series of com-

('ом¢)	1'roteize bistine					Lamerichertic wernjeg			
			1.9\%	$\begin{gathered} 1, m_{4}(\alpha+1, y \\ K_{1}+111 l^{\prime} \end{gathered}$				$\begin{gathered} 1,0 e_{1}(9)+10, \\ K_{1}+111 \end{gathered}$	
	$\Delta_{1} \cdot R_{1}{ }^{\prime \prime}$	$\pi^{\prime \prime}$	$11 \boldsymbol{\alpha}$)	Otosd		014×1		(11).al	(11×1)
Sulfanilamide	11	11	- - 96	--2.18	-2.90	--2.11	--2 10)	0. -7	1) 711
${ }^{-1}$ - Acet ylablfanilamide	4.30	11. 612	-:3.1.)	-1.if	-1.si	11.90	101	-0. i 10	- 0.11
2 -sulfanilamidopyrimidiue	3.36	0.79	- - . ! 9	-2.14	-1. 1.9	0.70	0.69	1). 00	- 0.111
O-Sulfanilamido-4-methylpyrimidiue	3.10	11.ss	-2.2)	-1.691	-1.44	1). 44	(1) 42	1) 24	1) 2.
2-Sulfanilamido-i)-methylpyrimidine	3.31	1.17	- - 11	-1.41	-11.11i	1). 60	U) (ili	1) 21	1) 24
2-Sulfanilanido-4,6-dinethytperimidine	$23 \times$	1). 76	--2.29	-3.10	- 1 (i. 4	11.23)	-11.117	11.7i	11.4
4-Sulfanilanide-2,6-dimethylpyrimidine	2. ${ }^{1}$	1) 29	-1.7s	- 1.1 .7	-2+2	-11.10:	--11.:31	11.36	0. 017
.i-sulfanilamidu-2,4-dimet hylpromidine	2×3	1.0.)	-1.i4	-1.19	-1.10				
4-sulfanilanidu-6-methoxypyrimidine	4.14	1.49	$-1 . \pi$	--0. $2-$	-11.1	1. (ii)	1.2:;	11.3 .1	-11.0is
	3.106	10.72	-1.911	-1.36	-1.71	11.11	(0.3)2	-(1) (1)	0. 1.5
f-Sulfanilanido-2,6-dimet hoxypyrimidiuc	3.76	1.62	-11.81	0 : 2	-11.92	1 uti	1.01	11.16	(1) 1:;
	3.34	1.76	-1.00	-0.0.)	11.111				
3-sulfanilanido-6-methoxypyridazine	2.5	1). 42	-1.7	-1.34	-1.3n	U.30	11.31	11.31)	1) : $3:$
:)-Sulfanilamids-6-chloropyridazine	3.3	1.2x	-2.00	-1). 68	- 11.				
:-Sulfanilamido-i-nethylinoxazole	4.0.3	1.27	-2.91	-1.19	--11.n(1)	1. 19)	1.12	(1.1):1	- 1.10
--Sulfanilamido-3,4-dimethylisoxazole	5.0N	2.23	-1.8	11.67	1). 79	1.75	1.71	-11.4is	-0. 0
--Sulfanilamido-4, i-dimelhyloxazole	2.68	0.6 K	-2.16	-1.N6	-1.7	- 11.32	0.07	-11.1:	0.24
3-Sulfanilamido-2-phenylpyrazole	3.90	1.97	-1.00	11.3)	9.3)	1).94	1.12	-11.12	U.11
\because-sulfandamidothiazole	$\bigcirc .83$	11.6!	-2.45	-2.111	-1.76	1).17	10.16	11.17	11. $2 \times$
2-sulfanilamido-i-ethy-1,3,4-thiadiazole	4.4 .3	1.s 4	-1. Is	11. 3)	(1. 14	1.14	1.40	-0.33	-11.1.1

 - Chalculated by eq öd. f Calculated by eq oisd.
pounds, ${ }^{* 2}$ so that the analys of the binding eonstant in terms of langmuin's α constant with the use of π and σ scems justified.

Fitting the data in Table III to eq 4sa, eq 49ame are obtained. To derive the equations we omitted 3 -sul-fimilamido-4, $\overline{5}$-dimethyprazole from the original work by Rieder ${ }^{21}$ since it wats found to be vers poonly conrelated. This seems to be due to its somewhat anomalous value for Langmuir's β eonstant when compared with those of others. The values of π are calculated

$$
\begin{aligned}
& \left.\operatorname{lng} \frac{1}{\alpha}+\operatorname{lng} k_{A}+111 \cdot \right\rvert\, \\
& \Rightarrow 1 .(\mathrm{i} .91 \pi-2 . \mathrm{n}, \mathrm{li} \\
& =11.740 \Delta_{1} K_{A}-3.0 ; \% \\
& =11.092 D_{\mathrm{p}} K_{\mathrm{A}}+1.519 \pi-3.0 .90
\end{aligned}
$$

$$
\begin{aligned}
& 20 \quad 0.6710 .769 \quad 1491) \\
& 200.5900 .940 \\
& \text { (4) (0) }
\end{aligned}
$$

from the partition coefficient obtained in the isobutyl alcohol-water system with the correction for dissociation in the aqueous phase (pH 7.4), assuming that any dissociation and association in the organic phase can be ignored. Instead of $\sigma_{2} \Delta \mathrm{p} K_{A}$ values are used for the analysis. The unsubstituted sulfanilamide is taken as the standand so that the π value indicates the hydrophobicity of the whole N^{-1} substituent. The $\Delta \mathrm{p} K_{\text {I }}$ value is assmmed to be proportional to the electronwithdrawing ability of the N^{1} substituent. Rieder" also me:sumod the partition coefficients of the drugs with tolume, CHCl_{1}, and ethyene dichloride as the organic phase. A good comelation is found only with the π values obtained with the isobuty alcohol-water system.

Comparison of eq $49 \mathrm{a}-\mathrm{c}$ would indicate that the modified binding constant is determined namly by the hydrophohicity al the N^{1} substituent. and nothing is to be ganed by the introduction of a $\Delta p K_{i}$ term.

[^6]Comversion of eq 49 a into eq $\overline{\mathrm{a}} 0$ shows that for the sulfonamides, for which the value of K_{A} is much larger than that of $\left.\mid \mathrm{H}^{+}\right]$. the larger the hydrophobicity of the Σ^{1} substituent and the smalle the disaciation comstant, the more firmly the sulfonamide are bound to the protem. For thase for which $K_{.}$is much smaller than $|\mathrm{H}+|$. en .00 indientes that the protem binding is only

$$
\log g_{\alpha}^{1}=1.6 .51 \pi-\log \left(K_{A}+111\right)-12.596+1111 \quad \text { i.ju }
$$

dependent on the hadrophobicity of the $N^{\prime \prime}$ substituent. Klotz and Wallererai recognized that the larger dissoci:ttion constant of sulfonamides tends to reduee their ability to combine with the peotein. liquations 49: and to clearly indicate that for a serbes of sultomamide of chosely related structure where the disoociation contstant is inot appreciably ramed, the binding is governed mostly by the hedrophobicity of the N^{-1} substituent. This is supported by the work of Scholt:men who hat shown that for serice of a-allyy- and i-alkoxy-2-sulfanitmmopramidines, the free-energy change for the binding is lincarly related to the carbon nmmber of the side chain. This important role for hydrophobic forees in holding sulfonamide drugs to sermin protemis in line with our earlior findings an the binding of organic compounds to atbmoin and hemoglobin. ${ }^{\text {bine }}$ Hawever. the slope of eq 49a indicater an even greater dependenco on this property for sulfonamide drugs than for simple aromatic compounds. Another inference of en 50 is that for a particular sulfonamide drug, the plots of log ($1 / \alpha$) aganst rariation of the experimental pH consist of two phases: i.e., when $\mathrm{pH} \ll K_{\mathrm{A}}$, the binding is almost unchanged with vantation of the pH , while when ${ }_{11} \mathrm{H} \gg \mathrm{p}_{3}$, the drig is loss limuly bomed to the protein widn increasing the pll. 'lhis is in acord, at lease fualitatively, with the finding of Sakagaki and his oroworkerse who have shown for several sulfommides that
the plots show a maximum approximately at the point of $\mathrm{pH}=\mathrm{p} K_{A}$ and the slope in the region of $\mathrm{pH} \gg$ $\mathrm{p} K_{\mathrm{A}}$ is steeper than that where $\mathrm{pH} \ll \mathrm{p} K_{A}$. Even though the sulfanilamido moiety may be of considerable importance for the protein binding as argued by Jardetzky ${ }^{20 \mathrm{~d}}$ from nmr studies, it is important to note that the N^{1} substituent contributes strongly to the binding since $\log (1 / \alpha)$ is linearly related to the hydrophobicity of the substituent.

The assumptions underlying eq $49 \mathrm{a}-\mathrm{c}$ can be justified, since, when the values of $\log 1 / \alpha$ are analyzed without correction for the ionization with $\Delta \mathrm{p} K_{\mathrm{A}}$ and π, the correlations are much worse than eq 49a-c in terms of both the correlation coefficient and the standard deviation as shown in eq 5la-c. Moreover, none of these equations is capable of describing the pH dependence of the binding constant.

$$
\begin{array}{rlrcc}
\log \frac{1}{\alpha} & =0.799 \pi-2.846 & n & s & r \\
& =0.21 i \Delta \mathrm{p} K_{\mathrm{A}}-2.680 & 20 & 0.491 & 0.696 \\
& =-0.321 \Delta \mathrm{p} K_{\mathrm{A}}+ & 20 & 0.64 \% & 0.343 \\
1.2 \overline{3} 8 \pi-2.28 \dot{0} & 20 & 0.4 \overline{5} 2 & 0.761
\end{array}
$$

Recently, Krüger-Thiemer and Bünger ${ }^{23}$ determined the minimum inhibitory concentration of this series of drugs for E. coli. For 17 out of 29 compounds in their paper, the physicochemical parameters, $\Delta \mathrm{p} K_{\mathrm{A}}$, and π obtained from Rieder's work, can be directly used for the analysis of the structure-activity relationship. Fitting the data in Table III to eq 2, 3, 6a-c, and 7a-c, eq $52 \mathrm{a}-\mathrm{d}$ and $53 \mathrm{a}-\mathrm{d}$ are obtained. In these equations,

$$
\begin{align*}
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+1 \mathrm{H}^{+1}}{1 \mathrm{H}^{+} 1}= \\
& \begin{array}{llll}
1.207 \pi-0.760 & 17 & 0.536 & 0.816
\end{array} \tag{52a}\\
& \log \frac{1}{C}+\log \frac{\left.K_{\mathrm{A}}+1 \mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}= \\
& 0.761 \Delta \mathrm{p} K_{\mathrm{A}}-1.995 \quad 17 \quad 0.244 \quad 0.965 \tag{2b}\\
& \log \frac{1}{C^{j}}+\log \frac{\left.\kappa_{\mathrm{A}}+\mid \mathrm{I}^{+}\right]}{\left[\mathrm{H}^{+}\right]}= \\
& 0.181 \pi+0.684 \Delta \mathrm{p} K_{\mathrm{A}}-1.932 \quad 170.2420 .968 \\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}= \\
& -0.296 \pi^{2}+0.985 \pi+ \\
& 0.605 \Delta \mathrm{p} K_{\mathrm{A}}-2.090 \tag{.52~d}\\
& \log \frac{1}{C^{\prime}}+\log \frac{K_{\mathrm{A}}+1 \mathrm{H}^{+1}}{K_{\mathrm{A}}}= \\
& \begin{array}{llll}
-0.300 \pi+0.421 & 17 & 0.318 & 0.509
\end{array} \tag{j3a}\\
& \log \frac{1}{\mathrm{C}}+\log \frac{K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|}{K_{\mathrm{A}}}= \\
& -0.240 \Delta \mathrm{p} K_{\mathrm{A}}+0.896 \quad 17 \quad 0.238 \quad 0.764 \tag{53b}\\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+\left|\mathrm{H}^{+}\right|}{K_{\mathrm{A}}}= \\
& 0.167 \pi-0.312 \Delta \mathrm{p} K_{\mathrm{A}}+ \\
& \begin{array}{llll}
0.955 & 17 & 0.238 & 0.783
\end{array} \tag{530}\\
& \log \frac{1}{C}+\log \frac{K_{\mathrm{A}}+\left\lceil\mathrm{H}^{+}\right\rceil}{K_{\mathrm{A}}}= \\
& -0.308 \pi^{\pi^{2}}+1.00 \overline{5} \pi- \\
& 0.393 \Delta \mathrm{p} K_{\mathrm{A}}+0.790 \tag{5}\\
& 17 \quad 0.216 \quad 0.839
\end{align*}
$$

C is the minimum inhibitory concentration in μ mole/L. and $\left[\mathrm{H}^{+}\right]$is taken as $10^{-7.2}$ (Sauton medimm ${ }^{18}$). Although the electronic effect of the N^{1} substituent seems

[^7] (1965/1966).
most significant for the activity, an F test indicates that both the π and π^{2} terms of eq 52 d are justified at almost 0.90 level of significance compared with eq $52 \mathrm{~b}\left(F_{2.13}=\right.$ $2.42, F_{2,13,0,10}=2.76, F_{2,13,0,25}=1.54$), so that the antibacterial activity of this series of compounds is not linearly related to π. The optimal π value is calculated by setting $\partial \log (1 / C) / \partial \pi=0$ in eq 52 d or 53 d , i.e., $\pi_{0}=1.67$. The plots of $\log (1 / C)$ against $\mathrm{p} K_{A}$, with a fixed hydrophobicity, would consist of two straight lines expressed by eq 54 and 55 according to conditions of $K_{\mathrm{A}} \ll\left[\mathrm{H}^{+}\right]$and $K_{\mathrm{A}} \gg\left[\mathrm{H}^{+}\right]$, respectively, where the π and π^{2} terms are collected and set constant.
\[

$$
\begin{align*}
& \log \frac{1}{C}=0.605 \Delta \mathrm{p} K_{\mathrm{A}}-2.090+\text { constant }(\pi) \tag{54}\\
& \log \frac{1}{C}=-0.393 \Delta \mathrm{p} K_{\mathrm{A}}+0.790+\text { constant }(\pi) \tag{55}
\end{align*}
$$
\]

The optimal $\mathrm{p} K_{\mathrm{A}}$ value for the apparent activity, \log $(1 / C)$, is obtained by setting $\partial \log (1 / C) / \partial \Delta \mathrm{p} K_{\mathrm{A}}=0$ in eq 52 d or 53 d ; i.e., $\mathrm{p} K_{\mathrm{A}}=7.0$ is calculated as the most favorable value for these heterocyclic sulfonamide series. These findings on the optimal physicochemical properties should be kept in mind in designing new sulfa drugs, especially since many of the clinically accepted sulfa drugs belong to this class of N^{1}-heterocyclic sulfanilamides.

One might assume that the optimal hydrophobic nature of the sulfonamide drug molecule is not significantly different from series to series, regardless of the type of the N^{11} substituent, at least for activity against a particular microorganism. Thus, for the activity of the sulfanilanilides against E. coli, π_{0} for the whole N^{1} substituent is estimated with the aid of the additive character of π as less than the π value for the N^{1}-phenyl moiety with the least hydrophobic substituent, i.e., $\pi_{0}<1.9 \cong[2.13$ (π for benzene) -0.21 (π for 4 OCH_{3} group)]. ${ }^{12}$ Activity is decreasing with increasing π of the substituent in this series as shown in eq $1 \overline{\mathrm{o}} \mathrm{c}$. For the N^{1}-benzoylsulfanilamides against the same bacteria, π_{0} for the N^{1}-benzoyl moiety is calculated similarly, i.e., $\pi_{0} \cong 1.9 \cong\left[0.8\right.$ (π_{0} for the substituent on the benzene ring) +1.58 ($\log P$ for acetophenone) 0.5 (π for CH_{3})]. ${ }^{12}$ Since the $\log P$ value for the unsubstituted sulfanilamide is $-0.78,{ }^{24}$ the $\log P_{0}$ value, the optinal hydrophobic parameter of the whole drug molecule for' these two series of compounds, is estimated as $\log P_{0} \leqq 1.1$ on the octanol-water scale. The value for the λ^{-1}-haterocyelic derivatives camot be compared on the sume basis with those for the above two series since the π values are determined using partition coefficients obtained in an isobutyl alcohol-water system. However, the π_{0} value, 1.68 , for the Γ^{1} heterocycles and the $\log P_{0}$ value for the N^{1}-heterocyclic sulfanilamides, $\cong 1.6 \cong\left[1.67\left(\pi_{0}\right)-0.07\right.$ (log P for sulfanilamide determined in isobutyl alcohol-water system ${ }^{21}$)], seems not inconsistent with values for the other series. Since the solubility of the highly polar sulfanilamides is expected to be greater in the more hydrophilic and polar solvent, isobutyl alcohol, than in the less so 1-octanol, the value of the partition coefficient of a sulfonamide would be larger in isobutyl alcoholwater than in the f-oetanol-water system.

The optimal $p K_{A}$ value for the apparent potency of the sulfonamide drugs, except for the N^{-1}-benzoyl deriva-
(24) C. Hanscl, and S. M. Anderson, J. Org. Chem., 32, 2583 (1967).
tiver, is always located a little below the value of experimental pH (i.e., between $\mathrm{p}_{\mathrm{A}}=6.5$ and 7.7) depending on the experimental conditions and test organisms. In spite of the exception of the N^{1}-benzoyl derivatives, am orer-all results indicate that the $\mathrm{p} K_{\mathrm{A}}$ value should be as close to body pH is possible in order to obtain a maximal chemotherapentic activits.

Although the ρ value for the λ^{-1}-heteracyelic derivat tives, 0.60), is very smitar to that obtaned for the sulfamilanilider agamst E . coli. $0 . \bar{i}$ (ρ value in ed 1.0 e divided by $\rho_{3}=1 . S s$), the ρ value for the \mathcal{N}^{1}-benzoy sulfamilamides aganst the same E. coli, 2.0 , is considerably larger than the othertwor As dexcribed above, the ρ value for the later is not highly reliable so that the difference in ρ mas not be worth trying to mationalize However, in our procedure, the $\Delta \mathrm{p} K_{\mathrm{A}}$ or σ term eamot be :assigned only to the contribution of :an clectronic demand of the drag molecule at the site of action. If the transfer proces from outside the cell ta the intracellular site of action throngh many partitionings and adsomption and desorption procesee bia biological membranes is governed to sone extent by an electronie offect of the substituent, this effect is contained in the ρ value together with the effect at the site of a ation. Since we are mable to separate the role of the $\Delta p K_{1}$ term, the difference in ρ values for different series wonld not necessarily indicate the difference in the essential electronic demand of the drugs at the site of action.

The above analves provide:anther illustration of the wreat practical advantage of the use of the extrathermo-
dynamic approachs: to structure activity problems. The rote of the hydrophobic property of the molecule in the baeteriseatic activity and the protein binding is nitedy delineated be means of π. The analysis, where the cffecte of substituent on ionization we separated from other eleetronic effects of substitucnts, is able m_{1} describe the p K_{1} dependener of the bacteriostatio activity. lt ados shows, in a procedure independent form those aif carlier workers. 4 a that the masimad antibacterial activis is exerted by drugs having an optimal ρK_{a} value. This procedure should help in designing new sulfontamide drugs with optimal p K_{1} and π_{0}. It should atoo ad in understanding the phamacokinetic mechanism undertving sulfonamide chemotherapy when a comprehemsive set of biological data and physicochemieal constants for in tuo propertier are avalable and an appropriate model can be chosen for in cimo phemonotra such as armatio effect, motabolic process, and remad exeretion. Thus, if this procedure eould be combined with the recently devedoped mothod by kruger-'lhemer and Bünger, ${ }^{3 / 3}$ a relationship between dosage schedule and molecolat structime of the sulfonamides could be integrated s o that an deal dosige sehedule for a mow drug could be prodicted from structural parameters such arlig P and $\Delta p K_{1}$.

Acknowledgment. The authors wish to expres thein sincere thanks to Profersors Totsuo Mitsui and Xinmern Nakajimat far their support af this work.
 actions." Ichan Wies :

Relationships among Current Quantitative Structure-Activity Models ${ }^{1}$

Jtimth A. Sisger and Willain l'. 'problal.

Department of Medicinal Chemistry, University of Tennesser Coltrge of Pharmeet, Memphis, Tomnesser 38103

Abstract

 which the observed biological activity is expressed as a fanction of group comtribations to the achivity and the wher inchades the Hansch substituent constant model. It is demonstrated (hat, if the biongical activity is a parabolic finction of Hansch's substituent constant, π, the model assuning additive and constant contribution from each group is not appropriate, but a model previously suceessful in a specifio instance is analogous to (he Hansch equation. If the π^{2} term is not significant, however, the model assuming additive and comstant coutribution is appropliate when the biological activity is dependent on π and,or σ

The recent success of attempts to express quantitatively the relationship of chemical structure to biological activity is most encouraging to the medicina? chemist who wishes to approach drug design rationally. The quantitative models for structure-activity relationships of related series of molecules fall into two hoad categories. (A) There are mathematical modols in which the observed biological activity is expressed as a function of parameters assigned to each substituent group and/or the parent portion of the molecule; the values of these parameters are obtained, after a particular model has been selected, by fitting the experimentally observed activitien of a series of molecules using the method of multiple regressions. (B) The

[^8]second category is comprised of linear freemergy relationships which ascribe the biological activity of : molecule to sontributions from various trec-energyrelated physicochemical parameters of the substituents. the eonstants associated with each phosicochemical parameter being generated by regression analysis for the biologically tested molecules.

Fxamples of the first approach include those of Free and Wilson ${ }^{2}$ and Kopecký and co-workers. ${ }^{3.4}$ The method of Free and Wilson? is based upon an additive nathenatical model in which a particular substituent in a specific position is assumed to make an additive and constant (ontribution to the biological atotivity of a molecule in a series of chemically related

[^9]
[^0]: (1) Studies on Structure-Activity Relationship. II.
 (2) P. H. Bell and R. O. Roblin, Jr., J. Am. Chem. Soc., 64, 2905 (1942)
 (3) P. B. Cowles, Yale J. Biol. Med., 14, 599 (1942).
 (4) J. K. Seydel, E. Krüger-Thiemer, and E. Wempe, Z. Naturforsch., 15b, 628 (1960).
 (5) See, e.g.. (a) H. G. Ing, "Organic Chemistry, An Advanced Treatise," Vol. 111, H. Gilman, Ed., John Wiley and Sons, lnc., New York, N. Y., 1953, p 436; (b) W. A. Sexton, "Chemical Constitution and Biological Activity," 3rd ed, D. Van Nostrand Co., Inc., Princeton, N. J., 1963, p 160; (c) G. 7binden, "Molecular Modification in Drug Design," F. W. Schuler, Ed., American Chemical Society, Washington, D, C., 1964, p $2 \tilde{j}$.

[^1]: (6) (a) C. Hansch and T. Fujita, J. Am. Chem. Soc., 86, 1616 (1964); (b) C. Hansch and A. R. Steward, J. Med. Chem., 7, 691 (1964); (c) C. Hansch, E. W. Deutsch, and R. N. Smith, J. Am. Chem. Soc., 87, 2738 (1965) : (d) C. Hansch, K. Kiehs, and G. L. Lawrence, ibid., 87, 5770 (1965): (e) K. Kiehs, C. Hansch, and L. Moore, Biochemistry, 5. 2602 (1966).
 (7) T. Fujita, J. Men. Chem., 9, 797 (1966).

[^2]: (9) (a) I. K. Seydel, Mol. Fharmatol., 2, 259 (1966): (1) Arzneimittel. Forsch., 16. 1447 (1966).
 (10) M. Yoshioka, K. Hamamolo, and T. Kubota, Bull. Chem. So. Japan, 35, 1723 (1962).
 (11) L. H. Schmidt. C. L. Siesler, and H. B. Hhglies, J. Pharmacal. Exphl. Therap., 81, 43 (1944)
 (12) T. Fijita. J. I"usa, and C. Hanseh, J. Am. Chem. Sor., 86, oiTis , 14647

[^3]:

[^4]: (17) J. K. Seydel and E. Wempe, Arzneimittel-Forsch., 14, iō (1964),

[^5]: (18) A. H. Anton, J. Pharmacol. Exptl. Therap., 129, 282 (1960).
 (19) B. B. Newbould and R. Kilpatrick, Lancet. 1, 887 (1960).
 (20) (a) I. M. Klotz and F. M. Walker, J. Am. Chem. Soc., 70, 943 (1948): (b) W. Scholtan, Arzneimittel-Forsch., 14, 348 (1964); (c) M. Nakagaki. N. Koga, and H. Terada, Yakugaku Zasshi, 83, 586 (1963); 84, 516 (1964): (d) O. Jardetzky and N. G. W. Jardetzky, Mol. Pharmacol., 1, 214 (1965): (e) L. B. Holder and S. L. Hayes, ibid., 1, 266 (1965).
 (21) J. Rieder, Arzneimittel-Forsch., 13, 81 (1963).

[^6]:

[^7]: (23) E. Krüger-Thiemer and P. Bünger, Chemotherapia, 10, 61, 129

[^8]: (), This reseach is heing supported by the t. S. Army Medical Research ancl Development Command (D.A-49-193-M1)-27-9) and the National
 How himy Reaearel Program on Malaria.

[^9]: (2) S. M. Free, Jr., and J. W. Witson, J. Mel, Chem., 7, 395 (1164).
 20. (biti (1964)

